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Derivatives of Value at Risk and Expected Shortfall 
 

Abstract 

 

This paper analyses derivatives of Value at Risk (VaR) and Expected Shortfall (ES). 

First, an elementary result is stated for continuous probability distributions by which 

derivatives of VaR and ES of arbitrary order can be derived through recursive 

application. The case of discrete distributions with only a finite number of possible 

values is also considered. In this case, expressions for the first derivatives of VaR and 

ES can be developed if an exception is made for certain discontinuity points. 
 

  

JEL classification: D 81, G 11 

 

Keywords : Risk Management, Value at Risk, Expected Shortfall, Marginal 
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1. Introduction 

 

Value at Risk (VaR) and Expected Shortfall (ES) are two closely related and widely 

used risk measures. An important issue are the derivatives of these risk measures: If a 

new position is added to the portfolio, how does the risk of the entire portfolio 

change? In practice, it is often assumed that marginal risk contributions are 

proportional to the contributions to the portfolio standard deviation, but this is only 

justified under certain restrictions on the probability distribution: For example, if 

returns are normal distributed, VaR is always a multiple of the standard deviation 

(e.g.,VaR99% is 2.33 standard deviations). But it is wellknown that the assumption of 

a normal distribution does not fit with reality, in particular because financial markets 

returns are fat tailed and because credit risk is asymmetric and skewed. The question 

arises if general expressions for the derivatives of VaR and ES exist which do not 

rely on specific assumptions about the probability distribution. 

 

A general and surprisingly simple result for the derivative of VaR is due to Tasche 

(1999), (2000), Lemus (1999) and Gourieroux/Laurent/Scaillet (2000). These authors 

have shown that under certain continuity assumptions, a first order approximation of 

VaR-contributions is given by the conditional expectation of the marginal risk, on 

condition that the portfolio value is exactly equal to VaR. Similarly, Tasche (1999) 

has shown that the first derivative of ES is also given as a conditional expectation, 

now on condition that losses are equal to or greater than VaR. A result for the second 

derivative of VaR was given by Gourieroux/Laurent/Scaillet (2000)1. 

 

For a simple intuition of these results, consider a Monte Carlo simulation with e.g. 

1000 random scenarios, which are ranked from the worst loss to the highest gain. 

VaR99% is then the outcome in the 10th worst scenario (losses do not exceed this 

amount in 99% of all cases) and ES is the average loss in the 10 worst scenarios. The 

simple fact that the value of the entire portfolio is always given as the sum of its 

constituents then suggests a decomposition of VaR and ES where the result of a 

particular position in the 10th worst scenario is considered as its contribution to VaR 

and the average loss of this position in the 10 worst scenarios is considered as its 

contribution to ES. Because of that, it is plausible that marginal contributions to VaR 
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or ES are both given as conditional expectations, in case of VaR on condition that 

losses are exactly equal to VaR2 and in case of ES on condition that losses are equal 

to or greater than VaR. 

 

However, it is not easy to complete such simple considerations to a rigorous proof. 

An illustration of the problems that will arise can be given with reference to the work 

of Hallerbach (2002) (notations translated): Assume, through varying the exposure 

ε  to Y, a small change in the allocation of a portfolio YεXZ += , where X and Y are 

arbitrary random variables. Then, in writing 

 

))Z(VaRZYX(E)Z(VaR =+= ε             (1) 

    

Hallerbach (2002) wants to exploit the linearity of the expectation and concludes 

that 

 

))Z(VaRZY(E
ε

)Z(VaR
==

∂
∂  (2) 

 

However, this neglects that, because of YεXZ += , the portfolio allocation has also 

an influence on the condition )Z(VaRZ = . For (2) to be a correct result it must also 

be the case that  

 

0ss
))sYX(VaRsYXYX(E

==∂
+=++∂

ε
ε

  (3) 

 

Of course, because it has been proven in the literature that the derivative of VaR is 

given as the conditional expectation and (2) is indeed correct, (3) must also be true. 

But (3) in itself is not a trivial result which is obvious without a mathematical proof. 

Therefore, although Hallerbach (2002) arives at a correct result, his reasoning is not 

completely convincing and cannot replace a rigorous proof. 

 
                                                                                                                                                                                     
1 A different derivation for the first and secnond derivative of VaR, which uses the Laplacwe 
transform, was given by Martin/Wilde (2002). 
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This paper has two aims. First, an elementary result about the expectation of a so 

called indicator function is derived, which follows from the law of iterated 

expectations. Derivatives of VaR and ES of arbitrary order can then be derived 

through recursive application of this result. This will be explicitly shown for the first 

and second derivatives. The second aim of the paper is to investigate the derivatives 

of VaR and ES in case of a discrete probability distribution. Until now, the case of a 

discrete dirtribution has not been studied in the literature. It will be shown by a 

counter-example that the derivative of VaR is not always given by the conditional 

mean in the discrete case. However, it turns out that such counter-examples are 

related to certain discontinuity points of the conditional mean. If an exception is 

made for such discontinuities, the results for the derivatives of VaR and ES can be 

generalized to the discrete case. 

 

The paper is organized as follows: The next chapter gives the formal definition of 

VaR and ES for continuous and discrete distributions. Thereafter, a basic result 

concernig the expectations of the indicator function is developed and applied in order 

to calculate derivatives of VaR and ES in the continuous case. Subsequently, the case 

of a discrete probability distributionis is discussed. A few concluding remarks 

follow. 

 

                                                                                                                                                                                     
2 But note that for a continuous distribution, the probability that the portfolio value will be exactly 
equal to a given VaR-number is always zero. The conditional expectation must then be interpretated in 
a non-elementary sense. 
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2. Definition of Value at Risk and Expected Shortfall 

 

Following Tasche (2002), the formal definition of VaR with confidence level p is as 

follows: 

 

 { }p)tX(obPrRtinf)X(VaR p ≥≤−∈=  (4) 

 

If the random variable X describes gains (positive values) and losses (negative 

values) of a bank portfolio, VaR according to this definition would be the minimal 

amount of economic capital required in order to preserve solvency (  X + economic 

capital ≥ 0) with a probability of at least p.  

 

If the inverse 1 

X
F −  of the cumulative distribution function of X exists, the definition 

simplifies to:  

 

)p1(F)X(VaR 1 

X
p −−= − . (5) 

 

VaR does not differentiate between small and very large violation of the VaR-

threshold. Indeed, VaR is not a so-called “coherent” risk measure in the sense of 

Artzner et al. (1999). For this reason, Expected shortfall (ES) has been proposed as 

an alternative to VaR. ES is defined as the average loss on condition that losses are 

greater or equal than VaR3. This definition can be motivated by the fact that not only 

the probability that the bank will collapse is of interest to the depositors of the bank, 

but also if they will loss everything or only a small amount of money in case that the 

bank actually collapses. ES then expresses the expected loss in case of a bank 

collapse4. 

 

Again following Tasche (2002), the formal definition of ES is as follows: 

 
                                                           
3 The definition of ES is similar to that of other downside risk measures like lower partial moments 
LPM. LPM are defined through LPMk = E(max(t-X,0)k). The difference between LPM and ES is that in 
case of ES the target t = VaR = VaRp(X) is not fixed at the outset but also depends on the portfolio 
allocation. Lower partial moments were discussed in Fishburn (1977). 
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{ }
p1

)))X(VaRX(obPrp)(X(VaR)1X(E
)X(ES pp)X(VaRX

p
p

−

−>−−−
=

−≤  (6) 

 

Here, 1A is the indicator function which has value 1 if A is true and zero otherwise.  

 

First consider a continuous distribution. Then it is always the case that 

))X(VaRX(obPrp p−>=  and (6) reduces to: 

 

{ } ))X(VaRXX(E
p1

)1X(E
)X(ES p

)X(VaRX
p

p −≤−=
−

−
=

−≤  (7) 

 

The conditional expectation in (7) is sometimes also called Tail Value-at-Risk 

(TailVaR)5. ES and TailVaR are therefore the same for a continuous probability 

distribution. From the substitution  (X)aRVts1)t(F sX −=⇔−=  one sees that ES or 

TailVaR can then also be written as the average VaR for all confidence levels greater 

than p:  

 

p1

ds)X(VaR

p1

)t(tdF
)X(ES

1
p s

)X(VaR
X

p

p

−
=

−

−
=

∫∫
−

∞−  (8) 

 

Conversely, VaRp(X) is the negative derivative with respect to the confidence level p 

of ESp(X) times 1 - p. Because of (8), ESp(X) is given in figure 1a by the hatched area 

times 1/(1-p) (= 100 if p=99%). 

 

Now consider a discrete distribution. If there are only a finite number of possible 

realizations, then the probability that losses are less than VaR could differ from the 

confidence level p. In this case, a correction has to be made in order to ensure that ES  

is the average loss in the worst (1-p)% cases and not the average loss in all cases 

where losses are not less than VaR. In (6), this correction is given by the second term 

of the numerator. In particular if 

                                                                                                                                                                                     
4 However, this implicitly assumes that depositors are risk-neutral or that a pseudo risk-neutral 
probability distribution for the valuation of state-dependent pay-offs has been used. 
5 See for example Artzner et al. (1999) p.223. 
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n21 X...XX <<<  (9) 

 

and   *ip) n 1( =− , where the ceiling function   x  denotes the least integer greater 

than or equal to x , then *ip X)X(VaR −=  and 

 

p1
]pp1[XpX

               

p1
)pp(XpX

)X(ES

1*ii

1i i*i
1*ii

1i ii

ni

1*ii i*i

*ii

1i ii
p

−

−−+
−=

−

−−−
=

∑∑

∑∑

−=

=

−=

=

=

+=

=

=

 (10) 

 

with the notation )XX(obPrp ii == . Obviously, ESp(X) is the weighted sum of 

*i1 X,...,X , and the weight of *i
X  is such that the weights sum up to 1. The 

difference between the continuous and the discrete case is also tried to illustrate by 

figure 1b. 
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Figure 1a: ES for a continuous distribution (hatched area times 1/(1-p)) 
 
 
 
 
 
 
  
                                                                            
 
 
 
 
                                                  
               
                                                 
 
 
 
 
 
 
 
 
 
 

Figure 1b: ES for a discrete distribution (hatched area times 1/(1-p)) 

 

))X(VaRX(obPr p−≤  
 

p1−  

0 x 

)xX(obPr ≤

VaRp(X)

 
 

=− p1 ))X(VaRX(obPr P−≤  

0 x 

)xX(obPr ≤

VaRp(X)
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3. Derivatives of Value at Risk and Expected Shortfall 

 

3.1 Continuous probability distributions 

 

In this section it will be shown that the derivatives of VaR and ES can be derived by 

a recursive application of an elementary result about the expectation of an indicator 

function (theorem 1). For this purpose, the indicator function { }tX1 ≤  is considered 

which is defined such that its value is one if X < 1 is true and zero otherwise. The 

relationsship to the conditional expectations is given by the following two equations: 

 

{ }

{ } )1(E
)1Z(E

dzdx)z,x(f

dzdx)z,x(zf
)tXZ(E

tX

tX
t

t

≤

≤

∞−

∞

∞−

∞−

∞

∞− ==≤

∫ ∫

∫ ∫
 (11) 

 

{ }

{ } )1(E
t

)1Z(E
t

dz)z,t(f

dz)z,t(zf
)tXZ(E

tX

tX

≤

≤

∞

∞−

∞

∞−

∂
∂
∂
∂

===

∫

∫
 (12) 

 

Also note that 

 

{ } )t(f)tX(obPr
t

)1(E
t XtX =≤

∂
∂

=
∂
∂

≤  (13) 

 

where fX(t) is the density of X. 

 

The following theorem 1 analyses the impact if a small perturbation Yε  is added to 

X. It states that the derivative with respect to the exposure ε  to Y can be replaced, 

after multiplying { }tYX1Z ≤+ε  by Y− ,  by the derivative with respect to the upper 

threshold t: 
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Theorem 1:  

 

If X, Y and Z are continuously distributed random variables, then: 

 

{ } { } )1YZ(E
t

)1Z(E tYXtYX ≤+≤+ −
∂
∂

=
∂
∂

εεε
 

 

Proof: 

 

First note that for any fixed values zZ,yY ==  :  

 

{ } { } { } { }
t

)1z(E
y

s
)1z(E)yt()1z(E)1z(E ytX

yts
sXytXtyX

∂

∂
−=

∂

∂

∂
−∂

=
∂

∂
=

∂

∂ −≤
−=

≤−≤≤+ ε
ε

εε

ε
ε

εε
 

 

Then, assuming that derivative and expectations can be interchanged, by the law of 

iterated expectations6: 

 

{ } { } { }

{ } { } )1YZ(E
t

))Z,Y1YZ(E
t

(E

))Z,Y1Z(E(E))Z,Y1Z(E(E)1Z(E

tYXtYX

tYXtYXtYX

≤+≤+

≤+≤+≤+

−
∂
∂

=−
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

εε

εεε εεε
 

                                                                                                                              ■ 

 

Results for higher order derivatives can be get by a recursive application of theorem 

17: 

 

{ } { } )1Z)Y((E
t

)1Z(E
ε

tYεX
n

n

n
tYεXn

n
≤+≤+ −

∂

∂
=

∂

∂  (14) 

 

                                                           
6 Define )zZ,yYX(E)z,y(g === . Consider the random variable )Z,Y(g  given as a function of 
the random variables Y  and Z . The law of iterated expectations then states: 

).X(E))Z,YX(E(E))Z,Y(g(E ==  
7 For a proof, interchange the differentation with respect to ε and t and replace Z by (-Y)n Z in each 
step. 
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As an example, the first derivative of VaR follows from theorem 1 in the following 

way: First note that )YX(VaRVaR p ε+=  is implicitly defined as a function of ε  

by: 

 

{ } .constp)1(E)VaRYX(obPr VaRYX ===−≤+ −≤+εε   (15) 

 

Differentiating this with respect to ε  and taking into account that VaR depends on ε  

yields 

 

{ } { }

{ } { }
ε

εε

εε

εε

∂
∂

∂

∂
+

∂

−∂
=

∂
∂

∂

∂
+

∂

∂
=

−=
≤+

−=
≤+

−=
≤+

−=
≤+

VaR
t

)1(E
t

)1Y(E

VaR
t

)1(E)1(E
0

VaRt
tYX

VaRt
tYX

VaRt
tYX

VaRt
tYX

   

 (16) 

 

and finally because of (12): 

 

{ }

{ }

)VaRYXY(E
)1(E

t

)1Y(E
tVaR

VaRttYX

VaRttYX
−=+−=

∂
∂

−
∂
∂

=
∂

∂

−=≤+

−=≤+
ε

ε
ε

ε
 (17) 

 

Other derivatives of VaR and ES can be calculated more or less in the same way. 

Theorem 2 collects the results for the first and second derivatives of VaR and ES. 

 

Theorem 2 : 

 

First and second derivatives of VaR)YεX(VaRp =+  and ES)YεX(ES p =+  are 

given as follows: 

 

 (i)  )VaRYεXY(E
ε

VaR
−=+−=

∂
∂     

 

(ii) VaRt
YεX

2

YεX2

2

t
))t(f)tYεXY(σ(

)VaR(f
1

ε
VaR

−=
+

+ ∂

=+∂

−
=

∂

∂  
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(iii) )VaRYεXY(E
ε

ES
−≤+−=

∂
∂  

 

(iv) 
p1

)VaR(f)VaRYεXY(σ

ε
ES YεX

2

2

2

−

−−=+
=

∂

∂ +  

 

To proof (ii)-(iv), it is useful to first show the following generalization of (iv): 

 

(v) 
p1

)VaR(f)VaRYXZ,Ycov()VaRYXZ(E YX

−
−−=+

−=
∂

−≤+∂ +εε
ε
ε

 

 

Proof: 

 

ad(v): From equations (11), (12), (13) and (17) it follows that: 

 

{ }

{ } { }

{ }

{ }

{ }

{ }

{ }

p1
)VaR(f)VaRYXZ,Ycov(

p1
)t(f])tYXZ(E)tYXY(E)tYXYZ(E[

}
t

)1(E
)]tYXY(E

)1(E
t

)1Z(E
t

)1(E
t

)1YZ(E
t{[

p1
1

)VaR
t

)1Z(E
t

)1YZ(E
(

p1
1

p1
)1Z(E

)VaRYXZ(E

YX

VaRt
YX

VaRt
tYX

tYX

tYX

tYX

tYX

VaRt
tYXtYX

VaRYX

−
−−=+

−=

−

=+=+−=+
−=

∂

∂
=+−

∂
∂
∂
∂

−

∂
∂

−
∂
∂

−
=

∂
∂

∂

∂
−

∂

−∂

−
=

−∂
∂

=

∂
−≤+∂

+

−=
+

−=
≤+

≤+

≤+

≤+

≤+

−=
≤+≤+

−≤+

ε

ε

ε

ε

ε

ε

ε

εε

ε

ε

εεε

ε

ε

ε

ε
ε
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ad (iii): 

 

0)VaRYεXY(E

p1
)VaR(f)VaRYεXYεX,Ycov(

)VaRYεXY(E

s
)VaRsYXYεX(E

s
)VaRYεXsYX(E

ε
)VaRYεXYεX(E

ε
ES

YεX

εsεs

+−≤+−=

−

−−=+−−
+−≤+−=

∂

−≤+−−∂
+

∂

−≤+−−∂
=

∂

−≤+−−∂
=

∂
∂

+

==

 

 

where the last but one steps follows from (v) with YεXZ −−=  

 

ad (iv): (iv) is a special case of (v) with YZ −= . 

 

ad(iii): It follows from (8) that VaR is the negative derivative with respect to the 

confidence level  p of ES times 1-p. Interchanging derivatives and applying (iv) then 

yields: 

 

VaRt
YX

2

YX

YX
2

2

2

2

2

t
)]t(f)tYXY([

)VaR(f
1

p
)]VaR(f)VaRYXY([

p
)ES)p1((VaR

−=
+

+

+

∂
=+∂

−
=

∂
−−=+∂

−=

∂
−−∂

∂
∂

=
∂
∂

ε

ε

ε

εσ

εσ

εε

 

 

The last equation follows because of (5) and 

 

 
)VaR(f

1))p1(F(
p

)VaR(
p YX

1
X −

−
=−

∂
∂

=−
∂
∂

+

−

ε

  

  ■ 
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Derivatives of VaR and ES of a degree higher than 2 can be get by further recursive 

applications of theorem 1. This requires that the results of theorem 2, in particular the 

conditional expectations and the density )t(f YX ε+ , can be expressed with the use of 

the indicator function, which is possible because of (11), (12) and (13). 

 

3.2 Discrete probability distributions 

 

In this section it will be studied whether the previous results are also valid for a 

discrete probability distribution. First, a counter-example will be developed which 

shows that the derivative of VaR not always coincides with the conditional 

expectation. Consider the following case: 

 

%8,97
%2,2

   
100
100-

X




=  

  (18) 

  
50%
50%

   
1
1

Y


−

=  

 

Assume that X , Y  are stochastically independent. Then: 

  

%9,48
%9,48

%1,1
%1,1

   

ε100
ε100
ε100
ε100

εYX











+
−
+−
−−

=+  (19) 

 

It follows from definition (4) that VaR of εYX +  with confidence level p=99% for 

sufficiently small ε  is given by: 

 

εε +=+ 100)YX(VaR %99  (20) 

     

The minimal economic capital is ε+= 100VaR , because with less economic capital 

the bank would collapse with probability 1,1% > 1%. Then for the derivative of VaR: 
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1)YX(VaR %99 =+
∂
∂ ε
ε

 (21) 

 

On the other side, because X and Y  are assumed to be stochastically independent, 

one gets for the conditional expectation on condition that the loss is equal to VaR at 

0ε = : 

 

0)Y(E)10XY(E)VaRYXY(E 0 =−=−=−=−=+− =εε  (22) 

 

Obviously, this conditional expectation differs from the derivative of VaR. This is a 

contradiction to theorem 2, result (i). 

 

However, if ε  different from, but very close to zero, and with the distributions of X 

and Y as presumed in the example above, the only possible solution of 

VaRYεX −=+ εε −−=+⇔ 100YX  is 100X −=  and 1Y −= . Therefore, for a 

sufficiently small 0ε ≠ , it is always 1)VaRYεXY(E =−=+− .  

 

It seems that it is only the discontinuity of the conditional expectation at 0ε =  that 

leads to a contradiction to theorem 2. In the neighbourhood of 0ε = , also in our 

discrete example the derivative of VaR always coincides with the conditional 

expectation. Theorem 3 shows that this observation can be generalized: 

 

Theorem 3: 

 

Consider two random variables X  and Y  with only a finite number )X,...X( n1  and 

)Y,...Y( m1  of possible realizations. Denote VaR)YX(VaRp =+ε  and 

ES)YX(ES p =+ε . Then for all sufficiently small 0ε ≠  in a certain neighborhood 

of 0ε = : 

 

(i)   VaR
ε∂
∂  = )VaRYXY(E −=+− ε   

 



 17

(ii)  ES
ε∂
∂ = 

{ }

p1

))VaRYX(obPrp(VaR)1Y(E VaRYX

−

−>+−
∂

∂
−− −≤+ ε

εε
               

                                     

Proof:  

 

First note that if the two random variables X  and Y  have a finite number of n resp. 

m possible realizations, then there is a strict ranking order of the mn ⋅  possible 

realizations of YεX +  and this ranking order will be the same for all sufficiently 

small 0ε ≠  in a certain neighborhood of 0ε = : 

 

)nm(l)nm(k)2(l)2(k)1(l)1(k YX...YXYX εεε +<<+<+  

 

Necessary conditions for this are )1i(k)i(k XX +≤  for all i and )1i(l)i(l YY +<  if 

)1i(l)i(l XX += .  

 

With this notation, the proof can be stated as follows: 

 

ad(i)  VaR with confidence level p is the minimal realization of YX ε+  on condition 

that less than m n )p1( −  realizations of YX ε+  are below –VaR. If the ceiling 

function   *ip) n m1( =−  denotes the least integer greater than or equal to 

m n )p1( − , then: 

 

)*i(l)*i(l)*i(k
YVaRYXVaR −=

∂
∂

⇒−−=
ε

ε           

 

On the other side, if the perturbation Yε  of X is sufficiently small, and on condition 

that 0ε ≠ , there is only one solution of VaRYεX −=+  <=> 

)*i(l)*i(k
YXYX εε +=+ , namely 

)*i(k
XX =  and 

)*i(l
YY = . Therefore: 

 

)YY;XXY(E)VaRYXY(E
)*i(l)*i(k

==−=−=+−    ε VaRY
)*i(l ε∂

∂
=−=  
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ad(ii): With notation i)i(l)i(k p)YXYX(obPr =+=+ εε , and recording that small 

changes of ε  have no effect on the ranking order, it can be stated that  

 

{ }

{ } )1Y(E                                                       

)pY(                                                       

]p)YX[()1)YX((E

)YX(VaRYX

i

*ii

1i )i(l

i

*ii

1i )i(l)i(k)YX(VaRYX

p

p

εε

εε ε
ε

ε
ε

+−≤+

=

=

=

=+−≤+

−=

−=

−−
∂
∂

=−−
∂
∂

∑

∑

 

 

It is then also the case that 

 

0)))YX(VaRYX(obPrp( p =−−<−−−
∂
∂ εε
ε

 

 

Applying this to the definition of ES (equation (6)) immediately yields: 
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It is clear that the that the above result for the first derivative of ES is a generalization 

of the result of theorem 2 for the continuous case. Note that in the discrete case, 

higher order derivatives of VaR and ES are always zero, because VaR and ES are 

then locally linear functions of ε . This can also be seen as in accordance with the 

results in the continuous case, because if the condition VaRYεX −=+  determines 

that *)i(kYY = , then Y becomes non-stochastic and the conditional variance 

)VaRYεXY(σ 2 −=+ , which appears in theorem 2 results (ii) and (iv), will be zero.  
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4. Concluding remarks 

 

It has been shown in the existing literature that general expressions for marginal 

contributions to VaR and ES are both given by conditional expectations, in case of 

VaR on condition that losses are exactly equal to VaR and in case of ES on condition 

that losses are equal to or greater than VaR. These results do not rely on any specific 

assumptions about the probability distribution. In this paper, a more elementary and  

general relationship (theorem 1) has been derived from which derivatives of arbitrary 

order can be get by recurrent application. This relationship may also serve for a 

deeper understanding of the mathematics behind the result that marginal 

contributions to VaR and ES are in fact given by conditional expectations.  

 

It has also been studied in this paper whether these results are valid for random 

variables with discrete probability distributions. Although counter-examples in 

particular for the first derivative of VaR can then be constructed, it is obvious that 

such counter-examples are caused by certain discontinuity points which could 

emerge if the conditional expectation is considered as a function of the portfolio 

allocation. It has been shown that it is possible to calculate first order derivatives of 

VaR and ES also in the discrete case provided an exception is made for such 

discontinuity points. However, higher order derivatives are always zero in the 

discrete case, because VaR and ES are then locally linear functions of the portfolio 

weights8. 
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